\(\int \frac {\arcsin (a x)^2}{x^3} \, dx\) [19]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 10, antiderivative size = 44 \[ \int \frac {\arcsin (a x)^2}{x^3} \, dx=-\frac {a \sqrt {1-a^2 x^2} \arcsin (a x)}{x}-\frac {\arcsin (a x)^2}{2 x^2}+a^2 \log (x) \]

[Out]

-1/2*arcsin(a*x)^2/x^2+a^2*ln(x)-a*arcsin(a*x)*(-a^2*x^2+1)^(1/2)/x

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 44, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {4723, 4771, 29} \[ \int \frac {\arcsin (a x)^2}{x^3} \, dx=-\frac {a \sqrt {1-a^2 x^2} \arcsin (a x)}{x}+a^2 \log (x)-\frac {\arcsin (a x)^2}{2 x^2} \]

[In]

Int[ArcSin[a*x]^2/x^3,x]

[Out]

-((a*Sqrt[1 - a^2*x^2]*ArcSin[a*x])/x) - ArcSin[a*x]^2/(2*x^2) + a^2*Log[x]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 4723

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcSi
n[c*x])^n/(d*(m + 1))), x] - Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 -
 c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 4771

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(
f*x)^(m + 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(d*f*(m + 1))), x] - Dist[b*c*(n/(f*(m + 1)))*Simp[(d
+ e*x^2)^p/(1 - c^2*x^2)^p], Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /;
FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && EqQ[m + 2*p + 3, 0] && NeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {\arcsin (a x)^2}{2 x^2}+a \int \frac {\arcsin (a x)}{x^2 \sqrt {1-a^2 x^2}} \, dx \\ & = -\frac {a \sqrt {1-a^2 x^2} \arcsin (a x)}{x}-\frac {\arcsin (a x)^2}{2 x^2}+a^2 \int \frac {1}{x} \, dx \\ & = -\frac {a \sqrt {1-a^2 x^2} \arcsin (a x)}{x}-\frac {\arcsin (a x)^2}{2 x^2}+a^2 \log (x) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 44, normalized size of antiderivative = 1.00 \[ \int \frac {\arcsin (a x)^2}{x^3} \, dx=-\frac {a \sqrt {1-a^2 x^2} \arcsin (a x)}{x}-\frac {\arcsin (a x)^2}{2 x^2}+a^2 \log (x) \]

[In]

Integrate[ArcSin[a*x]^2/x^3,x]

[Out]

-((a*Sqrt[1 - a^2*x^2]*ArcSin[a*x])/x) - ArcSin[a*x]^2/(2*x^2) + a^2*Log[x]

Maple [A] (verified)

Time = 0.03 (sec) , antiderivative size = 48, normalized size of antiderivative = 1.09

method result size
derivativedivides \(a^{2} \left (-\frac {\arcsin \left (a x \right )^{2}}{2 a^{2} x^{2}}-\frac {\arcsin \left (a x \right ) \sqrt {-a^{2} x^{2}+1}}{a x}+\ln \left (a x \right )\right )\) \(48\)
default \(a^{2} \left (-\frac {\arcsin \left (a x \right )^{2}}{2 a^{2} x^{2}}-\frac {\arcsin \left (a x \right ) \sqrt {-a^{2} x^{2}+1}}{a x}+\ln \left (a x \right )\right )\) \(48\)

[In]

int(arcsin(a*x)^2/x^3,x,method=_RETURNVERBOSE)

[Out]

a^2*(-1/2*arcsin(a*x)^2/a^2/x^2-arcsin(a*x)/a/x*(-a^2*x^2+1)^(1/2)+ln(a*x))

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 44, normalized size of antiderivative = 1.00 \[ \int \frac {\arcsin (a x)^2}{x^3} \, dx=\frac {2 \, a^{2} x^{2} \log \left (x\right ) - 2 \, \sqrt {-a^{2} x^{2} + 1} a x \arcsin \left (a x\right ) - \arcsin \left (a x\right )^{2}}{2 \, x^{2}} \]

[In]

integrate(arcsin(a*x)^2/x^3,x, algorithm="fricas")

[Out]

1/2*(2*a^2*x^2*log(x) - 2*sqrt(-a^2*x^2 + 1)*a*x*arcsin(a*x) - arcsin(a*x)^2)/x^2

Sympy [F]

\[ \int \frac {\arcsin (a x)^2}{x^3} \, dx=\int \frac {\operatorname {asin}^{2}{\left (a x \right )}}{x^{3}}\, dx \]

[In]

integrate(asin(a*x)**2/x**3,x)

[Out]

Integral(asin(a*x)**2/x**3, x)

Maxima [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 40, normalized size of antiderivative = 0.91 \[ \int \frac {\arcsin (a x)^2}{x^3} \, dx=a^{2} \log \left (x\right ) - \frac {\sqrt {-a^{2} x^{2} + 1} a \arcsin \left (a x\right )}{x} - \frac {\arcsin \left (a x\right )^{2}}{2 \, x^{2}} \]

[In]

integrate(arcsin(a*x)^2/x^3,x, algorithm="maxima")

[Out]

a^2*log(x) - sqrt(-a^2*x^2 + 1)*a*arcsin(a*x)/x - 1/2*arcsin(a*x)^2/x^2

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 82 vs. \(2 (40) = 80\).

Time = 0.29 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.86 \[ \int \frac {\arcsin (a x)^2}{x^3} \, dx=\frac {1}{2} \, {\left ({\left (\frac {a^{4} x}{{\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )} {\left | a \right |}} - \frac {\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a}{x {\left | a \right |}}\right )} \arcsin \left (a x\right ) + 2 \, a \log \left ({\left | x \right |}\right )\right )} a - \frac {\arcsin \left (a x\right )^{2}}{2 \, x^{2}} \]

[In]

integrate(arcsin(a*x)^2/x^3,x, algorithm="giac")

[Out]

1/2*((a^4*x/((sqrt(-a^2*x^2 + 1)*abs(a) + a)*abs(a)) - (sqrt(-a^2*x^2 + 1)*abs(a) + a)/(x*abs(a)))*arcsin(a*x)
 + 2*a*log(abs(x)))*a - 1/2*arcsin(a*x)^2/x^2

Mupad [F(-1)]

Timed out. \[ \int \frac {\arcsin (a x)^2}{x^3} \, dx=\int \frac {{\mathrm {asin}\left (a\,x\right )}^2}{x^3} \,d x \]

[In]

int(asin(a*x)^2/x^3,x)

[Out]

int(asin(a*x)^2/x^3, x)